Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Radiol Open ; 9: 100452, 2022.
Article in English | MEDLINE | ID: covidwho-2130709

ABSTRACT

Objective: To prospectively evaluate the image quality and diagnostic performance of a compact flat-panel detector (FD) scanner for thoracic diseases compared to a clinical CT scanner. Materials and methods: The institutional review board approved this single-center prospective study, and all participants provided informed consent. From December 2020 to May 2021, 30 patients (mean age, 67.1 ± 8.3 years) underwent two same-day low-dose chest CT scans using clinical state-of-art and compact FDCT scanners. Image quality was assessed visually and quantitatively. Two readers evaluated the diagnostic performance for nodules, parenchymal opacifications, bronchiectasis, linear opacities, and pleural abnormalities in 40 paired CT scans. The other 20 paired CT scans were used to examine the agreement of semi-quantitative CT scoring regarding bronchiectasis, bronchiolitis, nodules, airspace consolidations, and cavities. Results: FDCT images had significantly lower visual image quality than clinical CT images (all p < 0.001). The two CT image sets showed no significant differences in signal-to-noise and contrast-to-noise ratios (56.8 ± 12.5 vs. 57.3 ± 15.2; p = 0.985 and 62.9 ± 11.7 vs. 60.7 ± 16.9; p = 0.615). The pooled sensitivity was comparable for nodules, parenchymal opacifications, linear opacities, and pleural abnormalities (p = 0.065-0.625), whereas the sensitivity was significantly lower in FDCT images than in clinical CT images for micronodules (p = 0.007) and bronchiectasis (p = 0.004). The specificity was mostly 1.0. Semi-quantitative CT scores were similar between the CT image sets (p > 0.05), and intraclass correlation coefficients were around 0.950 or higher, except for bronchiectasis (0.869). Conclusion: Compact FDCT images provided lower image quality but comparable diagnostic performance to clinical CT images for nodules, parenchymal opacifications, linear opacities, and pleural abnormalities.

4.
Radiol Cardiothorac Imaging ; 2(2): e200107, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-1155975

ABSTRACT

PURPOSE: To study the extent of pulmonary involvement in coronavirus 19 (COVID-19) with quantitative CT and to assess the impact of disease burden on opacity visibility on chest radiographs. MATERIALS AND METHODS: This retrospective study included 20 pairs of CT scans and same-day chest radiographs from 17 patients with COVID-19, along with 20 chest radiographs of controls. All pulmonary opacities were semiautomatically segmented on CT images, producing an anteroposterior projection image to match the corresponding frontal chest radiograph. The quantitative CT lung opacification mass (QCTmass) was defined as (opacity attenuation value + 1000 HU)/1000 × 1.065 (g/mL) × combined volume (cm3) of the individual opacities. Eight thoracic radiologists reviewed the 40 radiographs, and a receiver operating characteristic curve analysis was performed for the detection of lung opacities. Logistic regression analysis was performed to identify factors affecting opacity visibility on chest radiographs. RESULTS: The mean QCTmass per patient was 72.4 g ± 120.8 (range, 0.7-420.7 g), and opacities occupied 3.2% ± 5.8 (range, 0.1%-19.8%) and 13.9% ± 18.0 (range, 0.5%-57.8%) of the lung area on the CT images and projected images, respectively. The radiographs had a median sensitivity of 25% and specificity of 90% among radiologists. Nineteen of 186 opacities were visible on chest radiographs, and a median area of 55.8% of the projected images was identifiable on radiographs. Logistic regression analysis showed that QCTmass (P < .001) and combined opacity volume (P < .001) significantly affected opacity visibility on radiographs. CONCLUSION: QCTmass varied among patients with COVID-19. Chest radiographs had high specificity for detecting lung opacities in COVID-19 but a low sensitivity. QCTmass and combined opacity volume were significant determinants of opacity visibility on radiographs.Earlier incorrect version appeared online. This article was corrected on April 6, 2020 and December 14, 2020.Supplemental material is available for this article.© RSNA, 2020.

SELECTION OF CITATIONS
SEARCH DETAIL